Here are the LFO time values
Posted: Sun Jul 23, 2017 10:51 pm
Sticky this post.
FREQUENCY VALUE > FREQUENCY IN HERTZ
0 > 0.014305
1 > 0.019073
2 > 0.024796
3 > 0.031471
4 > 0.039101
5 > 0.047684
6 > 0.05722
7 > 0.067711
8 > 0.080109
9 > 0.094414
10 > 0.11158
11 > 0.131607
12 > 0.154495
13 > 0.179291
14 > 0.205994
15 > 0.235558
16 > 0.267982
17 > 0.303268
18 > 0.340462
19 > 0.379562
20 > 0.421524
21 > 0.466347
22 > 0.51403
23 > 0.563621
24 > 0.61512
25 > 0.669479
26 > 0.7267
27 > 0.786781
28 > 0.84877
29 > 0.912666
30 > 0.979423
31 > 1.049042
32 > 1.121521
33 > 1.195908
34 > 1.272201
35 > 1.351356
36 > 1.433372
37 > 1.518249
38 > 1.605034
39 > 1.693726
40 > 1.785278
41 > 1.879692
42 > 1.976967
43 > 2.076149
44 > 2.177238
45 > 2.281189
46 > 2.388
47 > 2.496719
48 > 2.608299
49 > 2.72274
50 > 2.839088
51 > 2.958298
52 > 3.079414
53 > 3.203392
54 > 3.330231
55 > 3.458977
56 > 3.590584
57 > 3.724098
58 > 3.860473
59 > 3.99971
60 > 4.140854
61 > 4.284859
62 > 4.430771
63 > 4.579544
64 > 4.731178
65 > 4.88472
66 > 5.041122
67 > 5.199432
68 > 5.360603
69 > 5.524635
70 > 5.690574
71 > 5.859375
72 > 6.030082
73 > 6.203651
74 > 6.380081
75 > 6.558418
76 > 6.739616
77 > 6.922722
78 > 7.108688
79 > 7.297516
80 > 7.48825
81 > 7.681846
82 > 7.877349
83 > 8.075714
84 > 8.276939
85 > 8.480072
86 > 8.686065
87 > 8.893966
88 > 9.104728
89 > 9.318351
90 > 9.533882
91 > 9.752273
92 > 9.972572
93 > 10.499954
94 > 11.666297
95 > 13.125419
96 > 15.000343
97 > 17.499923
98 > 20.999907
99 > 26.249884
99 + Fine 99 > 32.0
You can calculate the output when using the Frequency Fine parameter by dividing the Fine parameter value by 99 and then calculating that percentage between the current and next value. Just be wary that the base 99 of the Frequency Fine parameter adds a step to the calculation. I'll use Andy's example:
"If the LFO frequency is 47 and the fine frequency is 73: First find entry 47 in the table. That value is 2.496719 Hz. The very next entry in the table is 2.608299 Hz. Use the fine control to find the point 73% of the way between these two values.
fine tune = (73/99) * (2.608299 - 2.496719) which is 0.082276162. Then the final result is
2.496719 + 0.082276162 = 2.578995162 Hz."
FREQUENCY VALUE > FREQUENCY IN HERTZ
0 > 0.014305
1 > 0.019073
2 > 0.024796
3 > 0.031471
4 > 0.039101
5 > 0.047684
6 > 0.05722
7 > 0.067711
8 > 0.080109
9 > 0.094414
10 > 0.11158
11 > 0.131607
12 > 0.154495
13 > 0.179291
14 > 0.205994
15 > 0.235558
16 > 0.267982
17 > 0.303268
18 > 0.340462
19 > 0.379562
20 > 0.421524
21 > 0.466347
22 > 0.51403
23 > 0.563621
24 > 0.61512
25 > 0.669479
26 > 0.7267
27 > 0.786781
28 > 0.84877
29 > 0.912666
30 > 0.979423
31 > 1.049042
32 > 1.121521
33 > 1.195908
34 > 1.272201
35 > 1.351356
36 > 1.433372
37 > 1.518249
38 > 1.605034
39 > 1.693726
40 > 1.785278
41 > 1.879692
42 > 1.976967
43 > 2.076149
44 > 2.177238
45 > 2.281189
46 > 2.388
47 > 2.496719
48 > 2.608299
49 > 2.72274
50 > 2.839088
51 > 2.958298
52 > 3.079414
53 > 3.203392
54 > 3.330231
55 > 3.458977
56 > 3.590584
57 > 3.724098
58 > 3.860473
59 > 3.99971
60 > 4.140854
61 > 4.284859
62 > 4.430771
63 > 4.579544
64 > 4.731178
65 > 4.88472
66 > 5.041122
67 > 5.199432
68 > 5.360603
69 > 5.524635
70 > 5.690574
71 > 5.859375
72 > 6.030082
73 > 6.203651
74 > 6.380081
75 > 6.558418
76 > 6.739616
77 > 6.922722
78 > 7.108688
79 > 7.297516
80 > 7.48825
81 > 7.681846
82 > 7.877349
83 > 8.075714
84 > 8.276939
85 > 8.480072
86 > 8.686065
87 > 8.893966
88 > 9.104728
89 > 9.318351
90 > 9.533882
91 > 9.752273
92 > 9.972572
93 > 10.499954
94 > 11.666297
95 > 13.125419
96 > 15.000343
97 > 17.499923
98 > 20.999907
99 > 26.249884
99 + Fine 99 > 32.0
You can calculate the output when using the Frequency Fine parameter by dividing the Fine parameter value by 99 and then calculating that percentage between the current and next value. Just be wary that the base 99 of the Frequency Fine parameter adds a step to the calculation. I'll use Andy's example:
"If the LFO frequency is 47 and the fine frequency is 73: First find entry 47 in the table. That value is 2.496719 Hz. The very next entry in the table is 2.608299 Hz. Use the fine control to find the point 73% of the way between these two values.
fine tune = (73/99) * (2.608299 - 2.496719) which is 0.082276162. Then the final result is
2.496719 + 0.082276162 = 2.578995162 Hz."